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ABSTRACT

A sixteen node shell element is developed using a matrix stabilization

scheme based on the Hellinger-Reissner principle with independent strain.

Initially the assumed independent strain is divided into a lower order part and

a higher order part. The stiffness matrix corresponding to the lower order

assumed strain is equivalent to the stiffness matrix of the assumed displacement

model element with the reduced integration scheme. The spurious kinematic modes

of the element are suppressed by introducing a stabilization matrix associated

with a judiciously chosen set of higher order assumed strain fields. Numerical

results show that this element is free of locking even for very thin plates and

shells.

INTRODUCTION

Since the early days in the history of the finite element method, a great

deal of research effort has been directed to the finite element modeling of thin

shell structures. Among all existing approaches, the degenerate solid shell

element concept [Ahmad, Irons and Zienkiewicz (1970)] appears to be the most

convenient for the description of the arbitrary shell geometry and the kinema-

tics of deformation. However, it is well known that the degenerate solid shell

elements exhibit a serious drawback unless special care is taken. Tnis phenone-

non, known as locking, arises from the overstiffening effect due to the con- -J

ditions of zero inplane strain and zero transverse shear strain when the shell

thickness becomes small [Lee and Pian (1978)].

A very popular way of alleviating locking has been to utilize the reduced

or selective integration scheme [Zienkiewicz, Too and Taylor (1971); Pawsey and

Clough (1971); Hughes, Cohen and Haroun (1978); Pugh, Hinton and Zienkiewicz

(1978); Stolarski and Belytschko (1982)]. However, the reduced or selective

integration scheme has not been successful in eliminating the effect of locking

" .°• .,',% , o ° , % ."% , , ", "%' ",' " ",• " ° o" " , ,"• ," "•",%'% .°, - .' " . w"%"o" " ,''1°
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completely. Even with the 2x2x2 point reduced integration, an eight node shell

element based on the assumed displacement finite element model still experiences

locking. On the other hand, the 2x2x2 point reduced integration rule applied

to a nine node element or the 3x3x2 point reduced integration rule applied to

a sixteen node element eliminates the effect of locking. However, they intro-

duce spurious kinematic modes which lead to unstable finite element models.

To improve the kinematic stability, we may employ selective integration schemes

to these elements in which a higher order integration rule is used for the

bending part. However, selective integration schemes cannot eliminate the

unstable spurious kinematic modes completely. In short, it is not easy to find

an appropriate reduced or selective integration rule which can eliminate both

locking and undesirable kinematic modes at the same time.

In order to suppress the spurious kinematic modes, we may add a stabiliza-

tion matrix to the element stiffness matrix evaluated by a reduced integration

rule [Belytschko, Ong and Liu (1984); Belytschko, Liu, Ong and Lam (1985)]. In

doing so, great care is needed to avoid reintroducing the effect of locking

through excessive stabilization. Recently, a rational method of generating a

stabilization matrix has been developed [Lee and Rhiu (1986)]. This method is

based on the Hellinger-Reissner principle including both independent strain and

displacement-dependent strain. The assumed independent strain is divided into a

lower order part and a higher order part. With a proper integration rule, the

lower order assumed strain leads to an element stiffness matrix equivalent to

that based on the assumed displacement model evaluated with the same integration -.

rule [Lee (1978); Malkus and Hughes (1978)]. A judiciously chosen higher order -

independent strain field is used to generate a stabilization matrix. Following

this approach, a nine node element which is free of locking and undesirabe

spurious kinematic modes has been developed for the analysis of thin shell N

2
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structures [Rhiu and Lee (1987); Rhiu (1985)].

Encouraged by this success, we extend in this paper the new approach to the

formulation of a sixteen node degenerate solid shell element. Since displacement

fields are assumed bicubic, the sixteen node element has the potential to repre-

sent shell hehavior with considerable accuracy. However, with the 4x4x2 point

integration, the sixteen node element based on the assumed displacement model

still suffers from locking, particularly for distorted or curved finite element

meshes. On the other hand, as mentioned previously, the element stiffness

matrix evaluated by the 3x3x2 point reduced integration rule has unstable

spurious kinematic modes. These spurious kinematic modes will be identified.

Then they will be suppressed by adding a stabilization matrix which is derived

through the use of appropriately assumed higher order independent strain fields.

Finally, the performance of the present element will be tested by solving

example problems.

GEOMETRY AND KINEMATICS

Figure 1 shows the inidsurface of a curved sixteen node shell element. In

order to describe the shell geometry and the kinematics of deformation, local

coordinates with components x, y and z are defined on the shell midsurface in

addition to global coordinates with components X, Y and Z. The x, y and z axes

of the local coordinate system are parallel to the orthogonal unit vectors al

A2 and a3 respectively. The unit vectors aland A2artngtil othsel

midsurface while a3 is normal to the surface. The al, A2 and a3 vectors are

given at each node as an input. In addition, they are defined at each integra- -

tion point in a manner which will be discussed later.

With the coordinate systems described above, the global position vector X of

a generic material point can be expressed as

X=0 + -7a (1

3



where X is the global position vector of a point located on the shell midsur-

t ''face, c a3 is a vector drawn from the point on the midsurface to the generic

material point, t is the shell thickness and the nondimenslonal coordinate C

runs from -1 to 1. Assuming the shell undergoes small deformation, the displa-

cement vector U of the generic material point with respect to the global coor-

dinate system can he expressed as

2 0 + .b 6 (2)

where

b -a2,al (2a)

nEq(n {(2b)

In Eq. (2b), e and e2 represent small rotations of a3 around the x and y axes

respectively. In Eq. (2), the global displacement vector U of the point on the

shell midsurface is related to the corresponding local displacement vector u

with components u, v and w through a transformation matrix T such that

u0 = T (3a)

T = 1~2,g3] m(3b)

Then introducing the isoparametric representation, Eqs. (1) and (2) can be

expressed as

16 16 1 -

X N(&.n) + Ni(&.n)t.(4
i=1 i- 2

16 16
= Z Ni(C,n)Tiui + c Z Ni(C,n)ti . i  i (5)

i =i iz-I"-""

whr i i " "
where X ti, P3 Ji,, i, i are the values of Xo, t, P3, u ., b, f at node

i, and Ni is the bicubic shape function in parent coordinates C and n.

With the description of X and 3 in Eqs. (4) and (5), the displacement-

4



dependent strain vector defined with respect to the global coordinate system can

be expressed in terms of the vector of nodal degrees of freedom. Then, using

strain transformation, the strain vectorT in the local coordinate system is

written symbolically as

yy y (6) a

B (C.'i-c) Se

where B(C,n,c) is the strain-displacement transformation matrix and the

element nodal degrees of freedom vector e is expressed as:

T MT ST, T OT T T2e = LJ j , 0 .. _ (7) .

FINITE ELEMENT FORMULATION

For the generation of our sixteen node shell element, we utilize the

Hellinger-Reissner functional vR expressed as follows:

CT E ET C E) dV- W (8)
'.%'

where T is the displacement-dependent local strain vector given in Eq. (6) and

E is the independent local strain vector such that

E = Exx Eyy Exy y z Ezx T  (9)'

In the present formulation, the independent strain components are assumed 'C

to be linear at most through shell thickness. In addition, in Eq. (8), W

represents the applied load term, V is the volume of shell and C is a 5x5

elastic coefficient matrix.

Following Lee and Rhiu (1986), initially the independent strain E is divided

into two parts such that

5
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E= E+ (10)

where E is the independent strain vector with lower order assumed polynomial

terms in E, n and E . is the higher order independent strain vector. *

Substituting this expression into Eq. (8), the functional wR becomes

WR = u -. Ue "W (11)_
R *e

where

T TT 1 TUe =( T E - L C E ) dV - f EH C EH dV""

+ f ET  ([-]L)dV (12)

and indicates summation or assembly over all elements.

For a sixteen node element of flat rectangular geometry, the displacement-

dependent strain . is cubic at most in E and n. If the lower order independent

strain IL is assumed to be biquadratic in E and n, the first integrals in Eq.

(12) can be integrated exactly in E-n plane by the 3x3 point Gaussian integra-

tion rule. The remaining terms are integrated by the 4x4 point rule over C and

n. Although these integration rules are determined based on the flat rec-

tangular element geometry, the same integration rules will be adopted for ele-

ments with arbitrary geometry. In c-direction, the two point integration rule

is used. In addition, the assumed lower order independent strain can be

expressed such that

18 18

2e (13

with

18

(13a)

In Eq. (13), shape function N is biquadratic in C, n and linear in C such that

Ni "1 at point i of the 3x3x2 lower order integration points and zero at other

6



points, and F. is the value off at lower order integration point i. Then, for Il

the lower order strains, it is possible to set

EL  (14)

at the 3x3x2 integration points.

Applying the adopted integration rules and introducing the equivalence

given in Eq. (14), Ue in Eq. (12) can be written as

U = f ETC EL dV - ETH C EH dV

+1 f (tTLd (15)
H H

In the above expression, letters L and H under the integral signs represent the

lower order integration (3x3x2 points) and the higher order integration (4x4x2

points) rules, respectively.

Based on the limitation principle [Fraejis de Veubeke (1965)], the polyno-

mial terms in the assumed strain EH cannot be of higher order than cubic in t

and n. Then, with biquadratic EL9 the term containing £L in the last integral

of Eq. (15) can be integrated by the 3x3x2 point integration rule. Noting this,

Ue can be rewritten as

u 1 ~f ET C E dV lf ETC E dV
e = L L- -L T HEH- -HL H""

+ f !T C dA -f ET C E LdV (16) -;

H L --

Rhiu and Lee (1987) developed a nine node shell element using the expression

for Ue equivalent to Eq. (16). For the present sixteen node shell element, the

expressions in Eq. (15) is used.

On the other hand, the higher order assumed strain is expressed as ,J.

7 V
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where P is the assumed strain shape function matrix which contain higher order

terms in t, n and a is the vector of higher order strain parameters. Note that

the P matrix is linear in c.

Introducing Eqs. (6), (13) and (18) into Eq. (15), the functional w R in

Eq. (11) becomes

T T IT T
R e K e G e T  H a ee) (19)

S.

where

K f C dV (20)

L BC- d 4

G f EC (' idV (21)
H

fEdV (22) .

- H - -
V.

T
T9e Qe W 

(23)

Setting 6v R = 0 with respect to a results in the compatibility equation in -

discretized form as follows:

H G e (24)

for each element.

By introducing Eq. (24) into Eq. (19), 'R can be written as *.5-

T T

R= (7 Se Ke ge - ,e e)  (25) .

In the above equation, the element stiffness matrix K is given as,e

K = + ts (26)

where

K T 1 (27)

8
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The KL matrix is evaluated by the 3x3x2 point integration rule while the K

matrix associated with the higher order assumed strain is evaluated by the 4x4x2

point integration rule. Note that the KL matrix is in fact the same element

stiffness matrix derived from the conventional assumed displacement model based

on the principle of virtual work with the 3x3x2 point reduced integration rule.

The KL matrix has spurious kinematic modes, and these modes are suppressed

by adding a properly constructed K matrix. Thus, Ks plays the role of a sta-

bilization matrix.

To construct the element stiffness matrix, it is necessary to evaluate the B

matrix at both the higher order integration points and the lower order integra-

tion points. Alternately B at the lower order integration points can be inter-

polated from B evaluated at the higher order integration points as follows:

32
IiN ,nii) B( j,nj, j) (28)

j=1

where the subscripts i and j stand for the lower order integration points and
.

the higher order integration points respectively, and the shape function N. is
.

bicubic in &, n and linear in 4 such that N. = 1 at the point j of the 4x4x2 '

higher order integration points and zero at other points.

CONTROL OF THE SPURIOUS KINEMATIC MODES

For an element of flat rectangular shape with sides along x = ±1 and y ±1

lines, it is possible to determine the analytical expressions for the spurious

kinematic modes of the KL matrix by expressing the assumed u, v, w, 6 and 02 as

polynomial functions in x and y coordinates. For example, we may write

63 '
u = a1 + a2x + ..... + 1 6 x y (29)

and similarly for v, w, 6 and 62. Then displacement-dependent strain vector

can be expressed from these assumed displacement fields. Now noting that 77

spurious kinematic modes of the KL matrix do not produce strain, we set

9



0- 0 (30o

at the 3x3x2 lower order integration points. This leads to a set of 72 homoge-

neous equations from which we can identify the following seven spurious kinema-

tic modes:

2 2 2 2(1) u = -C1 y (3x - 5x y + y2)
(31a)

V =  C, x (x
2  5x2y2 + 3y2

2

(2) e1 = C5 x( + x - 5x2y 2 + 3y2
1 5(31b) '

3 2 2 2 2(3)2 5 Y +3x xy + y)

2 2~ 2x 2
(3) u = C2 xy (9 - 15x - 15y + 25x y ) (31c)

(4) v = C3 xy (9 - 15x - 15y 2 + 25x2 y 2 ) (31d)

(5) w = C4 xy (9 -15x 2 -15y 2 + 25x 2 y2 )  (31e)
2 2 2 2

(6) 1 = C6 xy (9 - 15x - 15y + 25x y ) (31f)

(7) 82 = C7 xy (9- 15x 2 - 15y 2 + 25x2y2 ) (31g)

where C1, C2, .... , C7 are arbitrary constants. The modes given in Eqs. (31a)

and (31b) are incompatible. That is, they disappear for an assembly of only two

elements. However, the remaining modes are compatible and persist even after

assembling elements, resulting in an unstable finite element model. These

spurious kinematic modes are suppressed by introducing carefully chosen higher

order assumed strain fields as follows:

The displacement-dependent strain component corresponding to Eqs. (31a) to

(31g) are

E = - C1 (6xy - 10xy3 ) + C5 z(6xy - fOxy3)

C2 (9y - 45x y - 15y + 75x y )
2 3 2 3

+ C7 z(9y - 45x y - 15y + 75x y ) (32a)

10 -



Eyy . CI (6xy - lox 3y) - C5 z(6xy -lOx 3y

+ C3 (9x y15X3  45xy 2 + 75x 3 y )

- C3 (9x - 15x - 45xy 2 + 75x3 y 2)
Z3 2 3 2E xy C2(9X 15x 45xy + 75x y)

+ C3 (9y - 45x 2y - 15y 3 + 75x 2y3) 

3 2 3 2+ C7 z(9x - 15x -45xy + 75xy)

- - 2 3 2 3(2)
C6 z(9y 45x y . 15y + 75x y .

- 2x )2
E C4 (9 15x - 45xy + 75xy 2 )

C5 (- x + x - 5x3y 2 + 3xy 2

3 3 3 3
-C 6 (9xy - 15xy -15xy + 25xy) (32d)

= - 2 3 23
Ezx = C4 (9y - 45x y - 15y + 75xy)

3 2 2 3 3+ C5 (-- y + 3x y - Sxy + y )

+ C7 (9xy - 15x y- 15xy3 + 25x y) (32e)

Examining Eqs. (32a) to (32e), we realize that the spurious kinematic modes in

Eqs. (31a) to (31g) are suppressed for the following higher order assumed strain

fields:

(ExxH + 5 zxY+ 7 
xy  + "8 zxy3

(Eyy) za xy )z~ .

3 2 3 2 3 3(E yy)H 2 x y + a6 zxy x y + 10 ZXy

(E xy)H 0 (33)

(E x y32yz)H 03 y

2 3(Ezx)H "1 4 xy

t1s



In Eq. (33), als,'29 foe.. 01 are unknown coefficients. Alternately, noting

that the modes corresponding to C1 and C5 are incompatible, we may drop a7

a8 , a and I0 terms from Eq. (33). This leads to an assumed higher order

strain field with six coefficients and the resulting element stiffness matrix

has eight zero eigenvalues. However, when elements are assembled, the resulting

finite element model is kinematically stable.

2 3 3 2
For an element with arbitrary geometry, we use &n , En terms etc.

instead of x2y3 , x3y2 terms etc. Since 2n and 3n2 are not symmetric with

respect to parent coordinates & and n, the element stiffness matrix may be

dependent on the choice of local coordinate systems used. If the local coor-

dinate system is chosen such that the a or x axis is parallel with the t coor-

dinate, then the element stiffness matrix is not invariant when element geometry *

is nonrectangular. For example, consider the distorted elements with different

node numberings as shown in Fig. 2. Even though both elements have the same

geometry, we obtain two different element stiffness matrices. The local coor-

dinate system with x or a, parallel with & has been used in Lee, Wong and Rhiu

(1985) in conjunction with a nine node shell element. In spite of the lack of

invariance of the element stiffness matrices, this nine node shell element

showed excellent performance. This indicates that the invariance property is

not absolutely necessary for a good finite element. However, in the present

study, we enforce the invariance of element stiffness matrices by assigning a

particular local coordinate system for a given geometry of elment as follows

[Rhiu and Lee (1987)1:

If A denotes the position vector of the point located at = = = 0, we
~0%

may define two unit vectros v, and X2 at this point such that

1

'p

-. -



v axo  axo  (3
v2= n -0 (34a) :-w~p

2 x ax

The angle 80 between these two unit vectors is determined by the following

equation,
Cos e° = v1 * X2  (35)

Then, if e0 is less than or equal to 900, the unit vector al in the x direction

of local coordinate system is chosen to be parallel to C axis such that

axo  axo -.
a - 0

a (36a)

Otherwise, a is parellel to n axis such that

a1 - 3X2 (36b)

With this choice of a,, we can easily determine the other two unit vectors

and 3 with 3 being normal to the shell midsurface. Note that, while

vand 2 are determined at { - n = € =0 point, the a, , and a3 vectors can be

computed at any point on the shell midsurface. In particular, a1, a2 and a3 are

needed at the integration points...;"

With the local coordinate system defined as above, the higher order assumed

strains for the sixteen node shell element are chosen as follows:

1H " (37)

where for the 10a version,

13
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f 0 Cf1  0 0 0 f2 0 Cf2 0

0 g1 0 Cgl 0 0 0 92 0 C92

l 0 0 0 0 0 0 0 0 0 0 (38a)

0000910 00 0 0

0 0 0 0 0 f 0 0 0 0

T
2 Lai* 02' " io-I (38b)

and for the 6a version,

f 0 Cfl 0 0 0

0 g 0 cg 0 0

P= 0 0 0 0 0 0 (39a)

0 0 0 0 gl 0 V

0 0 0 0 0 f1-

T
SLa'. 82, ..... 'J (39b)

0"%'5-

In Eqs. (38a) and (39a), fl, f2, gl, and 92 are chosen as follows: de^

(1) if x or a1 is parallel to E as in Eq. (36a)

f = E 2n 3  f2  (40a) ".

3 2 3gl = E3n 2  92 z E n (40b) -,

(2) if x or a is parallel to n as in Eq. (36b)

f I 3 n2 f2 a &3n (41a)

.Sg, C2 n ' 92 " En 3 (41b)

NUMERICAL TESTS

In order to evaluate the performance of the present sixteen node element,

several numerical tests involving simple plates and shells were carried out.

For the purpose of identification, the present sixteen node element is called

14
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SHEL16. Whenever possible, the effectiveness of SHEL16 element is compared with '"

the DISP16 element based on the conventional displacement model with the 4x4x2

point integration rule. Most of the numerical results are presented in tabular

form so that they can be used for future reference. For the SHELl6 element, it

turns out that numerical results for the 6a assumed strain and the I0a assumed

strain are almost identical for the cases tested in this paper. Therefore only

the results for the 6a version is presented. All numerical examples were

calculated with double precision accuracy on the UNIVAC 1100/92 machine at the

University of Maryland.
S.'

(a) A Simply Supported or Clamped Square Plate

Plate bending problems provide examples to investigate the effect of trans-

verse shear locking alone. A quarter of a square plate subjected to uniformly

distributed load p was modeled by uniform lxi and 2x2 meshes and distorted 2x2
S

and 4x4 meshes as shown in Figs. 3(a) to 3(c). Both simply supported and

clamped boundary conditions were considered.

Table 1 lists the computed nondimensional deflection at the centroid of the -'"

plate. These values are normalized with respect to the analytical solution
based on the Kirchhoff thin plate theory (Timoshenko and Woinowski-Krieger

..

(1959)]. For the simply supported plate, both SHEL16 and DISP16 elements give

numerical results very close to the analytical solutions for the uniform meshes.

For the distorted 2x2 mesh, the SHEL16 element does not suffer any transverse

shear locking over a wide range of L/t ratios while the D!SP16 element reveals a

slight effect of shear locking when the plate becomes very thin. For the

distorted 4x4 mesh, both elements give very accurate results. For the clamped

plate, the SHEL16 element gives very accurate and reliable numerical results

over a wide range of L/t ratios regardless of mesh distortion. However,

for the distorted meshes, the performance of the DISP16 element deteriorates as

15



the plate becomes thin. Even in this case, the 4x4 mesh shows very accurate %

solution up to L/t - 10,000. .4-

Table 2 shows nondimensional bending moments Mx/pL2 per unit length eva-

luated at integration point E and nondimensional shear forces Qx/pL per unit
.X

length evaluated at integration point F. Note that the SHEL16 element solu-

tions are totally insensitive to the wide range of L/t ratios considered here.

Table 2 also includes analytical solutions obtained at corner points C and D.

They are listed to check the order of magnitude of numerical solutions.

(b) A Pinched Cylindrical Shell -4

As a deep shell example, a cylindrical shell loaded at two opposite points

as shown in Fig. 4 was tested. Both diaphragmed and fixed edge conditions were

considered. Due to symmetry in geometry and loading, only one octant of the

shell was modeled by 3x4, 4x5 and 5x6 meshes as shown in Figs. 5(a)-(c). In

addition, as shown in Fig. 5(d), an irregular mesh designated as 5x61 was also

considered. Note that the meshes illustrated in Figs. 5(a)-(d) are on the

stretched plane of the octant ABCD of the shell. Moreover, in order to describe

more accurately the complex shell behavior in the region near the load point C,

fine meshes are used along lines BC and CD.

Table 3 lists the nondimensional displacements at various points on the

diaphragmed shell for R/t = 100, 300 and 500. They are compared with the analy-

tical solutions given by Flgge (1962). The analytical solution is based on a

shell theory which neglects the effect of transverse shear deformation. Table 3

also includes numerical results obtained by the DISP16 element with the 5x6

mesh. For the models with SHEL16 elements, the solutions get closer to the ana-

lytical solutions as the number of elements increases. It is noteworthy that

the solutions for the distorted 5x61 mesh are very close to that for the regular

5x6 mesh. On the other hand, the DISP16 element shows signs of locking as the

solutions deteriorate with increasing R/t ratios. Even for R/t - 100, the 5x6

16

*,4 **& .* ~ " .. : ' -.d*._~.' :.. .. '. " '.- "-. -.-- -. -- - - .- .. --.-..- , . -- I"



mesh solution with the DISP16 element is worse than the 3x4 mesh solution witn

the SHEL16 element.

Table 4 lists nondimensional deflections at the pinched point C of the shell

with fixed ends. A good convergence is observed as the finite element model

with the SHEL16 elements is refined. Also there is no significant discrepancy h

between the 5x6 mesh and the 5x61 mesh. Figs. 6 and 7 show inplane force N1

and moment M2 per unit length along line BC for the 5x6 mesh with SHEL16 ele-

ments. An analytical solution for the fixed ends case is not available.

(c) A Hemispherical Shell

As a doubly curved shell example, a hemispherical shell subjected to con-

centrated loads as shown in Fig. 8 was considered. This problem exhibits pre-

dominantly bending behavior with very little lnplane behavior. Due to symmetry

in geometry and loading, a quarter of the shell was modeled by 4 element, 9 ele-

ment, 16 element and 20 element meshes. The 4 element, 9 element and 16 element

meshes are created by dividing uniformly over the angles 8 and #. The 20 ele-

ment mesh is created from the 16 element mesh as shown in Fig. 8.

For convenience, a small region at point C was not included in the finite

element modeling. As a check, two different cases were tested. In one case, the

region within e = 0.5* was cut out while, in the other cdse, the region within a

= 10 was excluded. The two cases gave the same result. In table 5 the com-

2puted nondimensional deflection DWA/PR at point A is compared with the analyti-

cal solution reported by Morley and Morris (1978). Symbol D represents bending

rigidity. The analytical solution is based on the Rayleigh-Ritz method. For

R/t = 250, the solution for the 16 element model agrees exactly with the analy-

tical value of 0.185. Even the 10 element model shows only 0.05% error. On the

other hand, the DISP16 element suffers from locking. Table 5 also includes the

R/t - 500 case. Morley and Morris (1978) did not consider this case.
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(d) A Toroidal Shell under Internal Pressure

A toroidal shell subjected to an internal pressure p was analyzed by the

SHEL16 element. Figures 9(a) and 9(b) show the geometry and material data. The

toroidal shell has both positive and negative curvatures along the meridional

angle. Due to the horizontal plane of symmetry and the axisymmetric loading, an

upper sector of shell with an angle of 8* was modeled with a row of 13 elements

and a row of 26 elements. The subtended angles of individual elements in the

13 element model are listed in Table 6. The 26 element model is obtained from

the 13 element model by dividing each element into two elements with equal sub-

tended angles. Numerical results for the 13 element model and the 26 element

model were almost the same. Therefore only the 13 element solutions are

reported here.

Table 7 shows nondimensional normal deflection (w/r) x I0 in comparison

with the numerical solution by Kalnins (1964) for r/t ratios of 20 and 200.

Kalnins' solution is a combination of the direct integration and the finite dif-

ference method. A very good agreement between the results of the SHEL16 element

and Kalnins' solution is observed. Table 7 also includes the SHELl6 element

solution for r/t = 1,000. This case was not considered by Kalnins. Figures 10

and 11 show the deflection and the bending stress (oo)b at the top surface of

the shell along the meridional angle direction. An excellent agreeaent between

the two solutions is observed for r/t = 20 and 200. For r/t = 200, the distri-

bution of the membrane stress (aee)m is shown in Fig. 12. Again the SHEL16 elc-

ment solution is almost identical to Kalnins' solution. The (aee)m/E curves for

r/t = 20 and 1,000 are very close to that for r/t = 200. Therefore, they are

not shown in Fig. 12 to avoid cluttering.

CONCLIUS ION

Results of numerical tests demonstrate that the present SHEL16 element

18



can be used to provide reliable solutions for thin plates and shells regardless

of distorted element geometries and clamped boundary conditions. In addition,

the SHEL16 element with the 10a version assumed strain is kinematically stable

at element level while the SHEL16 element with the 6a version assumed strain is

kinematically unstable at element level but stable at global structural level.

Thus the stabilization scheme with a judiciously chosen set of higher order

assumed strain terms has successfully suppressed compatible kinematic modes.J

without reintroducing the locking effect. Finally, the present SHEL16 element 5

can be used to generate benchmark solutions for testing the performance of otrier

shell elements.
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Table 1. Maximum nondimensional deflection at the centroid of the
square plate under uniform pressure

L/t-

Plate Mesh Element
102  103  104  105  ".

Uni form:
lx1 SHEL16 1.0000 0.9995 0.9995 0.9995

DISP16 1.0153 1.0150 1.0150 1.0150
2x2 SHELl6 1.0005 1.0000 1.0000 1.0000

Simply DISP16 1.0012 1.0007 1.0007 1.0007
Distorted:

Supported 2x2 SHEL16 1.0007 1.0007 1.0005 1.0005
DISP16 1.0015 0.9956 0.9542 0.9380

4x4 SHEL16 1.0005 1.0002 1.0002 1.0002
DISP16 1.0000 1.0002 1.0000 0.9906

Uniform:
1xi SHEL16 0.9968 0.9945 0.9945 0.9945

DISP16 1.0482 1.0474 1.0474 1.0474
2x2 SHEL16 1.0024 1.0000 1.0000 1.0000

DISP16 1.0016 1.0000 1.0000 1.0000
Clamped Distored:

2x2 SHEL16 1.0024 1.0000 0.9960 0.9960
DISP16 0.9945 0.9486 0.3007 0.0048

4x4 SHELl6 1.0024 1.0000 1.0000 0.9992
DISP16 1.0016 0.9992 0.9929 0.8632
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Table 2. Nondimensional bending moment and shear force of the
square plate (SHEL16 element with uniform 2x2 mesh)

Simply Supported Plate Clamped Plate

L M Q ) QxT (---)E )I---pppp---Z) F 2E (pppl)F::

pL pL

2
10 0.0476 0.310 0.0226 -0.404

103 0.0476 0.310 0.0226 -0.404

0.0476 0.310 0.0226 -0.404
105 0.0476 0.310 0.0226 -0.404.o.

M Q M
Analytical (p- - p - (,p -C

0.0479 0.338 0.0231

.
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Table 3. Nondimensional displacements for the
pinched cylinder with diaphragmed ends

REtw C  Etw B  Etu D
Element Mesh .. .B D

p p P

3x4 165.3 0.6776 4.102
SHEL16 4x5 166.1 0.5218 4.113

5x6 166.3 0.4770 4.113
5x6I 166.3 0.4718 4.113

100
DISP16 5x6 159.1 1.497 4.087

Analytical 164.3 0.4693 4.114

3x4 636.3 12.52 9.778
SHEL16 4x5 642.3 12.52 9.785

5x6 646.9 12.22 9.853
5x61 646.5 12.32 9.853

300
DISP16 5x6 531.1 21.31 9.397

Analytical 647.3 9.867

3x4 1172.2 10.60 14.46
SHEL16 4x5 1200.9 10.23 14.45

5x6 1212.0 13.47 14.55
5x61 1210.2 13.21 14.54

500
DISPI6 5x6 847.6 5.904 13.32

Analytical 1223.4 14.67

U.

24

. . . . . . . . . . . . . .~. + .. , - U( W "~\ Y-% %...



..

Table 4. Nondimenslonal deflection -Etw /P at the load point C
of the pinched cylindrical sqel1 with fixed ends

R/t

Mesh 100 300 500

3x4 137.2 511.1 930.9

4x5 137.9 518.5 961.5

5x6 138.2 521.6 969.2

5x6I 138.2 521.2 967.4

25
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Table 5. Nondimensional deflection -DwA/PR2 at the point A
of the hemispherical shell

No. of elements

R/t Element 4 9 16 20

SHEL16 0.174 0.183 0.185 -.

250
DISP16 - 0.113 0.160 -

SHEL16 0.158 0.176 0.182 0.182
500

DISP16 - 0.055 0.123 0.139

.5.

,.
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Table 6. Meridional subtended angle of the elements for the toroidal shell

element
no. 1 2 3 4 5 6 7 8 10 11 12 13

he 20 20 20 11 10 7 4 7 10 11 20 20 20
(degrees)

27



.,w.

.5,
3,w

Table 7. Nondimensional deflections (w/r) x 103 of the toroidal shell

e r/t =20 r/t -200 r/t = 1000

(degrees) SHEL16 Kalnins SHEL16 Kalnins SHEL16

0 0.1034 0.103 0.1038 0.100 0.1034

81 4.2119 4.208 5.1423 5.151 5.2911

99 3.4668 3.467 3.2952 3.297 2.8179

140 1.2513 1.249 1.3038 1.298 1.3273

.2

e.5

.
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Figure 1 A sixteen node shell element
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Figure 7 Bending moment distribution along line BC of the pinched

cylindrical shell with fixed ends
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Figure 8 Finite element mesh for one quarter of the hemispherical shell
subjected to concentrated loads
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